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sequences for h(n), x(n), and y(n), respectively, n = 0, -+ -,
N — 1. The kernel amplitude spectrum of length 2N is divided into
H@2l)and HQ! + 1),1 =10, - -+ , N — 1, on Fig. 1(d).

We investigated input S/N ratios (denoted by SNR,) versus out-
put S/N ratios (SNR,) in four different situations explained by Fig.
2 for the signals of length N = 256, and Fig. 3 for lengths N =
32. Input SNR’s are presented with their average (circles) and the
double standard deviation (+0). The solid lines correspond to de-
convolution with interpolated samples, the dashed lines to the di-
rect DET deconvolution. The (b) parts of the figures are for the
singular kernels. We made them singular synthetically by replacing
with zeros all the frequency samples H (k) whose magnitudes were
lowef than 1.5 times the smallest magnitude value.

VI. CONCLUSION

The proposed method is applicable in the frequency domain when
the kernel has no spectral inverse. Its computational complexity is
proportional to the complexity of an FFT and it is therefore much
faster than equivalent time-domain algorithms [2], [5]. This ad-
vantage is obvious in systems performing linear convolution, but
is lost in case of periodic convolution because the correction scheme
(3.9) must be applied. Section V shows that in a noisy environ-
ment, the frequency-domain deconvolution with interpolated sam-
ples achieved better input SNR’s than the direct DFT algorithm on
average.

The method performs better for shorter kernels, as a comparison
of Figs. 2 and 3 confirms. Namely, the kernel length N enters the
interpolation formula [6], suppressing the distant spectral samples
by a factor of N compared to those near the interpolation point.
This phenomenon is important when a kernel’s energy is concen-
trated in a very short frequency interval, which causes the inter-
polated samples distant from this region to be very small. In the
deconvolution process, they then excessively magnify the corre-
sponding frequency components in the obtained input signal. That
happened in our experiment with four signals with a very high
positive offset. By elimination of the kernel’s zero-frequency com-
ponent H(0) contributing to the energy concentration at the begin-
ning of the spectrum a great deal, a remarkable improvement of
input SNR’s from 19 to 35.29 dB (50 dB at the output) was achieved
on average.
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A Phase Determination Method for Nonminimum
Phase ARMA Systems by a Single Cumulant
‘Sample.

Chong-Yung Chi and Jung-Yuan Kung

Abstract—Given a set of output measurements x(k) of a linear time-
invariant nonminimum-phase ARMA(p,q) system H(z), the well-
known exhaustive search method (ESM) and Giannakis and Mendel’s
spectraily equivalent minimum-phase (MP) Hyp(z)—all-pass (AP)
H,p(z) decomposition based methods include two steps for estimating
the coefficients of H(z) = Hyp () - Hap(2). In the first step, Hyp (2) is
obtained by a correlation-based spectral estimation method. In the sec-
ond step, the ESM determines H(z) from Hyp () by cumulant match-
ing, and the MP-AP decomposition-based methods ldentlfy H sp (2) from
the cumulants of the preprocessed data 4(k), which is the output of the
inverse filter 1/ Hip (2) with input x(k). In this correspondence, we pro-
pose a new method only for the second step, which determines the op-
timum H,p () from Hyp (2) by maximizing the absolute value of a single
Mth-order (M = 3) cumulant of the output signal of an all-pass filter
H)p (z) with input 4(k). The optimum Hjp@) = 1/ H,p (2). Some simu-
lation results are provided to support the proposed method.

I. INTRODUCTION

Identification of linear time-invariant (LTI) systems with only
output measurements is very important in various signal processing

- application areas such as seismic deconvolution, channel equal-

ization, radar, sonar, biomedical signal processing, radio astron-
omy, speech processing, and image processing. In the past two
decades, a lot of correlation (second-order statistics) based identi-
fication methods were reported in the open literature. However, it
is well known that the correlation function of measurements is blind
to the system phase, and that the system phase can be recovered
from higher order statistics of non-Gaussian measurements such as
voiced speech signals, binary sequences in digital communica-
tions, and seismograms. Recently, cumulant (higher order statis-
tics) based identification [1]-[11] of nonminimum-phase LTI sys-
tems with only non-Gaussian output measurements has drawn
extensive attention in the previously mentioned signal processing
application areas. ‘
Assume that the data x(k), k = 0, 1, , N — 1, were gener-
ated from a real stable causal autoregressive moving -average
(ARMA( p,q)) model without all-pass factors as follows:

14 q .
x) = = B a@)ale — i) + ul) + X b@uk ) (1)
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where u(k) is real, zero-mean, independent identically distributed
(i.i.d.), non-Gaussian. Equivalently, the system has an irreducible
rational transfer function given by

B _1+bM)z' +---
AR 1+alz™' + - -

where the denominator A(z) is minimum phase, and the numerator
B(z) can be nonminimum phase. Assume that B(z) has g, real roots
and g, pairs of complex conjugate roots. Then the total number of
independent locations of zeros of B(z) is @ = (¢, + q;) < ¢ = q,
+ 2q,. Among the reported cumulant-based system identification
methods such as [1]-[11] for nonminimum-phase ARMA(p,q)
models, the well-known exhaustive search method (ESM) [1], [2]
and Giannakis and Mendel’s minimum-phase (MP) all-pass (AP)
decomposition based methods [6], [9] basically consist of two steps.
The first step includes the estimation of the spectrally equivalent
(SE) minimum-phase Hyp(2) by a correlation based ARMA spec-
tral estimator. In the second step, the ESM searches for the desired
transfer function A(z) by minimizing

+ b(g)z”*
+a(p)z™”

H(z) = @

J=2XX E|CM(k|,k2,"',kM—|)
ki k2 ky -1
- éM,x(kly ky, =0, kM-1)|2 E))

where C'M‘x(kl, ky, ** -, ky ) is the Mth-order sample cumulant
of data and Cylk;, k,, * * - , ky_;) is the calculated Mth-order
cumulant associated with one of the 2 possible SE H(z). On the
other hand, Giannakis and Mendel’s methods [6], [9] (also see
[10]), which are based on the following MP-AP decomposition

Bwp(@) B
A(2) Byp (2)

in which Hyp(2) = Byp(z) /A(2) is minimum-phase and H,p(2) =
B(z) /Byp (z) is an all-pass filter, preprocess the data x(k) with the
inverse filter 1/ Hyp (2) to obtain a *‘second-order white’” innova-
tions process #(k). In [6], Hp(z) is estimated from slices of the
sixth-order cumulant function of #(k) through a quite complicated
procedure. In [9], fourth-order cumulants of (k) are used to esti-
mate the AR parameters of H,p(z) and then the zeros (conjugate
reciprocal of poles) of H,p (z) are automatically determined.

In this correspondence, we propose a new phase determination
method only for the second step of the ESM and Giannakis and
Mendel’s MP-AP decomposition based methods. In Section II, we
present this new phase determination method. Some simulation re-
sults are then provided to support the proposed method in Section
III. Finally, we draw some conclusions.

H(z) = Hyp(2) - Hap(2) = @

II.-A NEw PHASE DETERMINATION METHOD

Assume that the order ( p,q) of H(z) is known a priori and the
minimum-phase estimate ﬁMp @ = I§Mp @/ A(z) has been ob-
tained. For ease of later use, let Syp(z) be the set of 22 all-pass
filters as follows:

Sap = {Hip@)|Hpp@) = Byp@)/B(2), Bz) € Sp}

where Sp = {B(2)|B(2) - Bz™") = Byp (@) * Byp (z ~")} contains all
SE B(z) associated with Byp (z). Note that |[Hip(z = exp {j2xf |
= 1 for all Hyp(z) € Ssp. The signal processing procedure of the
new phase determination method is shown in Fig. 1. Following
Giannakis and Mendel’s MP-AP decomposition, we also prepro-
cess x(k) by the inverse filter 1/ Hyp (2) to obtain the **second-order
white’’ innovations process #(k). Furthermore, we process d(k) by
an all-pass filter Hjp(z) € Sap such that the Mth-order cumulant

u(k)
H(z)
=H p(z)-Hyp(2)
ZQ candidates
x(k) 1 (k) ] (k)
B wpl?) (secouﬁii{order) Hip()
white

Fig. 1. Signal processing procedure [from x(k) to v(k)] of the proposed
phase determination method.

sample, CA'M,l,(kl =0,k =0, -, kyy_; = 0), of the output signal
v(k) of Hyp(2), is maximum in absolute value. The new phase de-
termination method is based on the following theorem.

Theorem 1: Assume that x(k) is the output of an ARMA(p,q)
model given by (1) with input u(k) being zero-mean i.i.d. with
nonzero Mth-order (M = 3) cumulant v, and that Hyp (z) is known
a priori. Let x(k) be the input of the system shown in Fig. 1. Then
the following inequality holds:

[Ch oy =0,k =0, * -+, kyy—; = 0)]

< |yy| forall Hyp(z) € Sap

where Cy ,(ky, k, * - -, kpr—1) denotes the Mth-order cumulant
function of the output (k) of the system. The equality holds if and
only if Hyp(z) = 1/Hyp(2). The proof of this theorem is given in
Appendix A.

Let us summarize the proposed phase determination method as
follows:

1) Preprocess x(k) by the inverse filter 1 /HMP (2) to get a(k),
which is further processed by an all-pass filter Hyp(2) € Sap
(see Fig. 1).

2) Search for the optimum Hjp (z) from S,p such that the objec-
tive function

Je®) = [Cu sk =0,k =0, [ ky 1 =0 (3
which only involves a single sample cumulant of v(k), is
" maximum.
3) As a by-product, the estimate 4, is determined to be
In = Cuoli =0, ks =0, <+ ky_, =0) (6

which is associated with J. = [§l-

Note that every all-pass filter Hjp(z) of Ssp except the one
H,p(z) = 1 is anticausal stable since all its poles are outside the
unit circle. In other words, the all-pass filtering with Hjp(z) must
run backwards to obtain the output signal (k). It is advisable here
to indicate the distinctions between the proposed method and some
other methods as follows.

R1) Huzzi [8] proposed a method to estimate coefficients of the
AR process rather than ARMA process by using a third-order mo-
ment of innovations process with lag (0, —1) instead of letting the
innovations process pass through an all-pass filter, although he gave
an expression for 4; in terms of the SE parameters and the cumulant
of innovations process with lag (0, —1).

R2) Shalvi asnd Weinstein [11] proposed a blind equalizer for
nonminimum phase LTI channels by maximizing the absolute kur-
tosis (a single fourth-order cumulant) of the output y(k) (corre-
sponding to v(k) in Fig. 1) of equalizer without utilizing the esti-
mate Hyp (z) under the constraint E{| y(k)|>} = E{|c(k)|*} where
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c(k) (corresponding to u(k)-in Fig. 1) is the input sequence of chan-
nel. The obtained optimum equalizer corresponds to the inverse
filter 1 /H(z) except for a constant delay factor. Their method re-
quires M = 4. However, requiring that Hyp(2) be given in ad-
vance, our method maximizes J forany M = 3 as long as vy # 0
under the constraint of all-pass filter with unity gain, which is
stronger than the previous Shalvi and Weinstein’s constraint since
the former implies E{|v(%)|*} = E{|u(®|*}.

Next, we present how to find the J,,,,. Two phase searching al-
gorithms for finding J,,,,, are considered in the following.

A. Phase Searching Algorithm 1 (PSA1) (Exhaustive Search)

The first phase searching algorithm, denoted PSAIL, simply
searches S,p for the desired Hjp(z) by performing F, = 29 opera-
tions of all-pass filtering (se¢ Fig. 1) and then computing the
associated F, Mth-order sample cumulants (:‘M,,,(kl =0,k =0,
<+, ky-, = 0). In other words, it searches for J,,,, in an ex-
haustive manner.

B. Phase Sedrching Algorithm 2 (PSA2) (Iterative Search)

The second phase searching algorithm, denoted PSA2, was mo-
tivated by the fact that every all-pass filtering Hjp (z) of S,p can be
factored as a cascade of first-order all-pass filters of S,p and sec-
ond-order all-pass filters of S,p. Note that the overall transfer func-
tion from wu(k) to @(k) corresponds to the all-pass filter
B@) / Byp (2). The algorithm PSA2 begins with the initial By(z) and
v(k) set to Byp(2) and #(k), respectively. For the ith iteration, we
form the following all-pass filters associated with B;_ (), denoted
H;(z), as follows:

@' —2z)/1 —zz7"), forarealz;
' -HeT -z M
(1 -zz™Ha - zf'z7Y, ’ for a complex z;

Hi@ =

where 1/z; is the jth root of B;_(z) inside the unit circle. Note
that H;(z) € Ssp for all j. Let v(k) be the common input to all-pass
filters H;(z) for all j. Then we compute J(v;(k)) where v; (k) is the
output of the all-pass filter H;(z). Then we update J; by

J; = max {J@@;(6)} = I, ®). ®
J
IfJ, > J,_y, I§,- (z) and.v(k) are updated as follows:
Bi@ = B\ /H,@ ©)
vk) = v, (k). (10)

The overall transfer function from u(k) to v(k) thus corresponds to
the all-pass filter [B(z)/B;_ ()] * H,(z) = B®)/B;(). The signal
v(k), therefore, plays the same role as d(k) in Fig. 1 for the next
iteration. When J; < J;_, the algorithm converges; Jy.x = Ji_1,
and the overall transfer function from u(k) to v(k) corresponds to
the all-pass filter B(z)/B;_ () = 1. Thus, AR) = B@/A@) =
B;_,(z)/A(2). The algorithm PSA2 can be viewed as an iterative
discrete search algorithm contrast to PSA1. However, it is not
guaranteed that the former can find the global maximum of J. Some
characteristics of PSA2 are given as follows:

C1) In each iteration, either a first-order all-pass factor or a sec-
ond-order all-pass factor of the desired Hjp(z) is determined and
the objective function J is guaranteed to increase in the meantime.
Therefore, the total number of iterations spent until convergence is

“equal to OU + 1 where OU is the sum of the number of real roots

of E(z)routside the unit circle and the number of pairs of complex
conjugate roots of B(z) outside the unit circle.

C2) Both the total number of all-pass filtering operations per-
formed and the total number of Mth-order sample cumulants com-
puted equal ‘

H=Q0+@- D+
= (OU + 1)(Q - 20U).

+ (@ — OU)

It can be easily shown that F, < F, = 22. Therefore, PSA2 is
faster than PSAL.

III. SIMULATION RESULTS

We generated a zero-mean exponentially distributed i.i.d. ran-
dom sequence u(k) with variance 02 = 1 and skewness v; = 2.
Then we passed this sequence through the selected ARMA miodel
to obtain the noise-free synthetic data x(k). The length of data was
N = 1024 and cumulant order M = 3 was used in our simulation.
The improved inverse filtering method [12], [13], which simulta-
neously estimates ARMA parameters as well as the initial condi-
tions of the inverse filter 1/ HAyp () from x(k) in the sense of least
squares of the output of 1/ Hyp(z), was then used to obtain
I?MP (@) = l?Mp(z) /zf(z). We then preprocessed the data x(k) to.ob-
tain (k) and w(k) by using the inverse filter 1/ Ayp (2) and the filter
A(z), respectively. Then we searched for B(z) by the proposed
method (including PSA1 and PSA2) with f(k) and by the ESM with
W(k), which corresponds to-a MA (g) process, respectively. Fi-
nally, mean and standard deviation for each estimated parameter
of H(z) and 45 were calculated from 30 independent runs.

A. Example 1. Maximum-Phase ARMA(5,4)

The ARMA parameters used were shown in Table I and the zeros
of this model are located at 2, 1.4, 0.9 + 0.9j. For this-case ¢, =
2,¢=1,0 = q, + g;= 3 and OU = 3. The simulation results
for ARMA parameters, which are-shown in Table I, were exactly
the same for both our method and the ESM. As we predicted, the
number of iterations spent by PSA2 in.each run was equal to OU
+ 1 = 4 (<22 = 8 associated with PSA1). Additionally, the mean
+ standard deviation for the estimate 45 obtained by our method
was 1.9703 + 0.0652 and that obtained by the ESM was 2.0629
+ 0.0374. These results indicate that both our method and the ESM.

~work well and have the same performance.

B. Example 2. Minimum-Phase ARMA(6,5)

The ARMA parameters used were shown in Table II and the
zeros of this model are located at 0.8, 0.75, 0.5, 0.5881 + 0.5882;.
For this case ¢; = 3, ¢, = 1, Q@ = ¢; + ¢, = 4 and OU = 0.
Again, the simulation results for ARMA parameters, which are
shown in Table II, were exactly the same for both our method and
the ESM. Again, as we predicted, the number of iterations spent
by PSA2 in each run was equal to OU + 1 =1 (<22 = 16
associated with PSA1). Additionally, the mean + standard devia-
tion for the estimate 43 obtained by our method was 1.9874 +
0.0104, which is slightly better than the corresponding resuit
2.1365 + 0.0429 obtained by the ESM. These results also indicate

‘that both our method and the ESM work well and have the same

performance. As a final remark, we also performed many other
simulations that ended up with the same conclusion.
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TABLE I
SIMULATION RESULTS ASSOCIATED WITH EXAMPLE 1 (MAXIMUM-PHASE
ARMA(S,4)), N = 1024)

Parameters True Values Estimated Values (Mean + o)
a(l) -3.5 ~3.4959 + 0.0287
a(2) 5.0775 5.0715 + 0.099%4
a(3) —3.9013 —3.9040 + 0.1473

. a@) 1.6125 1.6199 + 0.1104
a(5) —0.2869 —0.2896 + 0.0340
b(1) -5.2 —5.2001 + 0.0058
b(2) 10.54 10.5403 + 0.0152
b(3) '~10.548 —10.5487 £ 0.0164
b(4) 4.536 4.5363 + 0.0073

TABLE I

SIMULATION RESULTS ASSOCIATED WITH EXAMPLE 2 (MIMIMUM-PHASE
ARMA(6,5)), N = 1024)

Parameters True Values Estimated Values (Mean + o)
a(l) -1.95 —1.9482 + 0.0410
a(2) 0.4475 0.4473 £ 0.0772
a(3) 1.0944 1.0855 + 0.0591
a(4) —0.5492 —0.5374 + 0.0639
a(5) —0.1145 —0.1171 + 0.0605
a(6) 0.0766 0.0746 + 0.0340
b(1) —3.2265 —3.2266 + 0.0002
b(2) 4.4788 4.4793 + 0.0014
b(3) —3.3363 -3.3372 + 0.0018
b(4) 1.3045 1.3054 + 0.0016
b(5) —0.2076 —0.2079 + 0.0006

IV. CONCLUSIONS

In this correspondence, we have presented a new phase deter-
mination method (see Fig. 1) which also begins with the same pre-
processing by the inverse filter 1 / Hyp (z) with Giannakis and Men-
del’s MP-AP decomposition based methods and then identifies the
all-pass filter H,p(z) by maximizing the objective function J given
by (5), which only involves a single Mth-order (M = 3) cumulant
of the output signal v(k) of the all-pass system shown in Fig. 1.
Two phase searching algorithms, PSA1 and PSA2, were pre-
sented to find the maximum of J. The former is an exhaustive search
algorithm whereas the latter is an iterative search algorithm. The
proposed method can be implemented either by 2¢ processors in
parallel (associated with PSA1) or Q processors (associated with
PSA2) in parallel while 22 processors are required by the ESM.
We prefer PSA2 to PSA1 since PSA2 not only has a much simpler
parallel processing structure but also is faster than PSA1 [see char-
acteristic (C2) in Section II-B]. The proposed method was devel-
oped for a general case of M = 3. Some simulation results for the
case of M = 3 with noise-free synthetic data were also provided to
support the proposed method. Finally, we would like to emphasize
that the proposed method performs as well as the ESM since their
performance is determined solely by the estimation accuracy of the
estimated Hyp ().

APPENDIX A
PROOF OF THEOREM 1

The Mth-order cumulant function of (k) is known to be
Cuulkrs by + = s kg =) = yar8(k)) 8Gky)8Chks) = -+ Sl 1)
(A1)

where 8(k) is the discrete delta function. One can see, from Fig. 1,
that v(k) is the output of the all-pass filter Hyp(2) = Hap(2) -
Hjp(2) with real coefficients. Assume that

Hup(f) = Hyp(z = exp {j2af}) = exp {j270(f)}

with ¢(0) = 0 without loss of generality, where the phase ¢(f) is
a continuous odd function of f. The Mth-order polyspectrum,
Su.o(fis * * , fu—1), of v(k) is then given by

Suolfisfos =0t Ju-v)

(A2)

M-
= Suu(fis fos " s fu-0 {;}l HAP(fi)}

CHRA A+ + fun)
= yy * exp {j2aP(fi, = - -, fu-1)} (A3)
where
P(fi, " s fu-) = () + - + o(fu-)
= o(fi + 0+ fu-) (A%)
is also a real continuous function of f;, - - * , fiy— ;. Then we, from
- (A3), obtain
[Ch.(0, 0, -+ -, O
1/2 1/2
- \m RS [ e ti2ePr
cdfvdfy - dfy -
1/2 1/2
<t o T e et o
sdfidh ccc dfyy = |vul. (A5)

It is trivial to see that if H,p(z) = 1, the equality in (AS5) holds.
Next, we show that when the equality in (AS) holds, Hp(2) = 1.
From (A4) and (AS), one can infer that when the equality holds

o(f) + -+ S(fu-) — (i + -0+ fu)
=0+ L forall (fy, -, fu-1 (A6)
where —1/2 < 8 < 1/2 is a constant and L is an integer. Letting
fi=fH ="+ =fy_1 =0in (A6), we obtain § + L = (M —

2)¢(0) = 0 since ¢(0) = 0. This leads to § = —L, which implies
6 =L =0since —1/2 < 8 < 1/2. Therefore, (A6) reduces to

o)+ F S fu-) =i+ o) (AD
which implies ¢(*) is a linear operator, or ¢(f) = « * f, or
Hyp(x) = Hyp(2) * Hpp(2) = 2° (A8)

where « is a constant. Since Hsp(z) = B(z)/Buwp(2) never takes
the form z*' with ; # 0 and Hjp(2) = 2°* € S4p for any o, # 0,
(A8) holds only when o = 0. Therefore, Hyp(z) = 1 when the
equality in (A5) holds, or equivalently Hpp(z) = Bur @ /B@) =
Bup(2)/B(z) = 1/Hap(z) € Sap since Hyp(z) (or equivalently
Bup(2) = Byp(2) and B(z) = B(2) € Sp) was assumed known. We
thus have completed the proof. Q.E.D.
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Asymptotic Distribution of the MUSIC Null
Spectrum

Jinho Choi and lickho Song

Abstract—In this correspondence we derive the asymptotic distribu-
tion of the MUSIC null spectrum, from which an exact expression of
the asymptotic variance of the MUSIC null spectrum can be obtained.
The result pr ted in this corresp e is a simpler alternative
and a speéial case of a more general result recently obtained by Lee
and Wengrovitz.

I. INTRODUCTION

For source localization purposes array sensors have been used
widely and various high-resolution methods based on the eigen-
structure have been proposed, e.g., multiple signal classification
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““Identification of nonminimum phase linear stochastic '

(MUSIC) [4] and minimum-norm [2] are among the typical tech-
niques. In [1] and [6], the mean and variance of the MUSIC null
spectrum have been obtained to the first-order approximation. It is
pointed out in [6], however, that the variance of the MUSIC null
spectrum cannot be exactly expressed by the first-order approxi-
mation. This is quite an important and reasonable observation, since
in general the mean is expressed by a first-order approximation and
the variance is usually expressed by a second-order approximation.
In this correspondence we obtain the asymptotic distribution of the
MUSIC null spectrum, from which we can immediately find a more
exact expression of the variance.

)

II. BACKGROUND

Let us consider an L-element array of what output is y(f) € C Lx1
with CL*! denoting the space of L X 1 complex-valued Vectors,
and assume the standard model of observation

YO = Ax@ + 0@, 1,2, N.

In (2.1) it is assumed that the column vector x(f) for M-signal
sources is an M X 1 zero mean complex normal random vector and
the additive noise n (¥) is also a zero mean complex normal random
vector with covariance matrix o/. The full-rank covariance matrix
of x(t) is E[x()x"(t)] = R, where E denotes the statistical expec-
tation and H denotes the Hermitian transpose. The matrix 4 is an
L X M (L > M) complex matrix having the particular structure: 4
= [a(8), a®y), * -, a(y)], where 0, is the DOA of the ith
signal source. Here a(6;) € C"*" is called the steering or transfer
vector. If we denote the covariance matrix of y(£) by R,, it is easy
to see that

2.1

R, = AR A" + ol. 2.2)

The eigenvalues and eigenvectors of R, are denoted by Ay = N\, =

- = Nand e, e, - - -, ey, respectively. It is noteworthy that
My+1 = My+2 = * -+ = N\, = 0. The ranges of the matrices se
[e, ey, *+* ,eyland G 2 {epi1s era2o - 5 €r) are called the
signal and noise subspaces, respectively. We observe that

al®G =0, for# € ©

where © £ {6, 6, - - -, 8y}, because the vectors {a(d), I < i

< M} are orthogonal to the noise subspace. If we define f(6) =
a?(0)GG¥a(8), the function f(f) has zeros only at 6 € © [5]. In
practice, however, we can obtain only the estimates of § and G, §
and G, from the estimate of R = (1/N) I, y()y"(5). The
MUSIC null-spectrum D(f) is then defined by

D) = d"6)GGTa(®)

(2.3)

(2.4)

and it is thus expected that D(6) has minimum points at around §
€ 0. Therefore, we can estimate the DOA by taking the local min-
imum points of D ().

III. AsymproTic DistriBUTION OF THE MUSIC NuLL
SPECTRUM

_To establish the distribution of the MUSIC null spectrum, we
first review the statistical properties of eigenvectors of the sample
covariance matrix Ry. Following [S, lemma 3.1], the orthogonal
projections of {¢;}, M X 1 < i < L, onto the column space of the
signal subspace § are asymptotically jointly Gaussian distributed
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